
Basic Type

Basic Type
Introduction

Integers

➢ Long, short, unsigned

Floating

➢ Double, float

Char

Conversion

Typedef

Sizeof

2

Basic Type
Introduction - Integer

Integers

➢ The leftmost bit of a signed integer (i.e. sign bit) is 0 if the number is a
integer greater than or equal to zero, 1 if it's negative

➢ The largest value is 2(n-1) - 1, where n is the number of bits

Unsigned

➢ The largest value is 2(n) - 1, where n is the number of bits

By default, integer variables are signed in C

3

Basic Type
Introduction - Integer

Integer types come in different sizes

➢ The int type is usually 32 bits, but may be 16 bits on older CPU

➢ C provides long and short integer type

short int
unsigned short int

int
unsigned int

long int
unsigned long int

4

Basic Type
Introduction - Integer

On a 16-bit machine

Type Smallest Largest

short int -32,768 32,767

unsigned short int 0 65,535

int -32,768 32,767

unsigned int 0 65,535

long int -2,147,483,648 2,147,483,647

unsigned long int 0 4,294,967,295

5

Basic Type
Introduction - Integer

On a 32-bit machine

Type Smallest Largest

short int -32,768 32,767

unsigned short int 0 65,535

int -2,147,483,648 2,147,483,647

unsigned int 0 4,294,967,295

long int -2,147,483,648 2,147,483,647

unsigned long int 0 4,294,967,295

6

Basic Type
Introduction - Integer

On a 64-bit machine

Type Smallest Largest

short int -32,768 32,767

unsigned short int 0 65,535

int -2,147,483,648 2,147,483,647

unsigned int 0 4,294,967,295

long int -263 263-1

unsigned long int 0 264-1

7

Basic Type
Introduction - Integer constants

Decimal (base 10)

➢ 15, 255, 16500

Octal (base 8)

➢ 027, 01364, 07777

Hexadecimal (base 16)

➢ 0xf, 0x9f, 0x5adf, 0xFF

8

Basic Type
Introduction - Integer constants

Octal numbers use only the digit 0 through 7

Each position in an octal number represents a power of 8

➢ The octal number 237 represents the decimal number is

2 82 + 3 81 + 7 80 = 128 + 24 + 7 = 159

A hexadecimal (or hex) number is written using the digits 0 through
plus the letters A through F, which stand for 10 through 15, respectively

➢ The hex number 1AF represents the decimal number is

1 162 + 10 161 + 15 160 = 256 + 160 + 15 = 431

➢ The letters in a hexadecimal constant may be either upper or lower case

0xff 0xfF 0xFF 0Xff 0XFf

9

Basic Type
Introduction - Integer constants

To force the compiler to treat a constant as a long integer, just follow it
with the letter L (or l)

15L 0377L 0x7fffL

To indicate that a constant is unsigned, put the letter U (or u) after it

15U 0377U 0x7fffU

L and U can be used in combination

0xfffffffUL

10

Basic Type
Introduction - Overflow

When arithmetic operations are performed on integers, it's possible that
the result will be too large to represent

➢ For example, when an arithmetic operation is performed on two int values, the
result must be able to be represented as an int

➢ If the result can't be represented as an int, we say that overflow has occurred

The behavior when integer overflow occurs depends on whether the
operands were signed or unsigned

➢ When overflow occurs during an operation on signed integers, the program's
behavior is undefined

➢ When overflow occurs during an operation on unsigned integers, the result is
defined: we get the correct answer modulo 2n, where n is the number of bits
used to store the result

11

Basic Type
Introduction - Reading and Writing Integers

Reading and writing unsigned, short, and long integers requires new
conversion specifiers

When reading or writing an unsigned integer, use the letter u, o, or x
instead of d in the conversion specification

12

Basic Type
Introduction - Floating

C provides three floating types, corresponding to different floating-point
formats

➢ Float

• Single-precision floating-point

➢ Double

• Double-precision floating-point

➢ Long double

➢ Extended-precision floating-point

13

Basic Type
Introduction - Floating

If 32 bits, using vector [x31, x30, …, x1, x0]

x31 is the sign bit (s), [x30, x29 , …, x23] is the exponent bits (exp), and
[x22, x29 , …, x0] is the fraction bits (M)

n = (-1)s M 2exp-127

14

Basic Type
Introduction - Floating

n = (-1)s M 2exp-127

ex. -12.625 presented by IEEE-754, single precision (32 bits)

First: convert 12.625 (decimal) to a value (binary)

12.625 => 1100.101 = 1.100101 23

Second: calculate the exponent

127 + 3 = 130 => 10000010

Third: insert value to the floating format

S E M

1 10000010 10010 1000 0000 0000 0000 0

15
Reference

http://www.chwa.com.tw/TResource/VS/book1/ch2/2-5.htm

Basic Type
Introduction - Char

The values of type char can very from one computer to another, because
different machines may have different underlying character sets

A variable of type char can be assigned any single character

char ch;

ch = 'A';
ch = 'a';
ch = '0';
ch = ' ';

char ch;
int i;

i = 'a'; // i is 97 now
ch = 65; // ch is 'A' now
ch = ch + 1; // ch is 'B' now
ch++; // ch is 'C' now

16

Basic Type
Introduction - Char

Characters can be compared, just as numbers can

if ('a' <= ch && ch <= 'z')
{

ch = ch - 'a' + 'A';
}

It also can be employed by the for statement

for (ch = 'a'; ch <= 'z'; ch++)
{
…

}

17

Basic Type
Introduction - Char

Calling C's toupper library function is a fast and portable way to convert
case

ch = toupper(ch);

toupper returns the upper-case version of its argument

Programs that call toupper needs the following code

#include <ctype.h>

The C library provides many other useful character-handling functions

18

Basic Type
Introduction - Reading and Writing Characters

Using scanf and printf
➢ The %c conversion specification

char ch;

scanf("%c", &ch); // reads one character
printf("%c", ch); // writes one character

scanf doesn't skip white-space characters

To force scanf to skip white space before reading a character, put a
space in its format string just before %c

scanf(" %c", &ch);

space 19

Basic Type
Introduction - Reading and Writing Characters

Since scanf doesn't normally skip white space, it's easy to detect the
end of an input line: check to see if the character just read is the new-
line character

A loop that reads and ignores all remaining characters in the current
input line do {

scanf("%c", &ch);
printf("ch = %c\n", ch);

} while (ch != '\n');

When scanf is called the next time, it will read the first character on the
next input line

20

Basic Type
Introduction - Reading and Writing Characters

For single-character input and output, getchar and putchar are an
alternative to scanf and printf

putchar writes a character

Each time getchar is called, it reads one character, which it returns

putchar(ch);

ch = getchar();

getchar returns an int value rather than a char value, so ch will often
have type int

Like scanf, getchar doesn't skip white-space characters as it reads

21

Basic Type
Introduction - Reading and Writing Characters

Using getchar and putchar (rather than scanf and printf) saves
execution time

➢ getchar and putchar are much simpler than scanf and printf, which are
designed to read and write many kinds of data in a variety of formats

do {
scanf("%c", &ch);
printf("ch = %c\n", ch);

} while (ch != '\n');

do {
ch = getchar();
putchar(ch);

} while (ch != '\n');

22

Basic Type
Introduction - Char

Write a program to determine the length of a Message

23

Basic Type
Introduction - Conversion

When a computer perform an arithmetic operation, the operands must
usually be of the same size (the same number of bits) and be stored in
the same way

If operands with different types are mixed in expressions, C compiler
will create instructions that different types will be adjusted into same
types to evaluate the expression

➢ If adding a short type variable and a int type variable, the compiler will
convert the short type variable into int type

➢ If adding a int type variable and a float type variable, the compiler will
convert the int type variable into float type

24

Basic Type
Introduction - Conversion

An example of the usual conversions:
char c;
short int s;
int i;
unsigned int u;
long int l;
unsigned long int ul;
float f;
double d;
long double ld;

i = i + c; //c is converted to int
i = i + s; //s is converted to int
u = u + i; //i is converted to unsigned int
l = l + u; //u is converted to long int
ul = ul + l; //l is converted to unsigned long int
f = f + ul; //ul is converted to float
d = d + f; //f is converted to double
ld = ld + d; //d is converted to long double 25

Basic Type
Introduction - Conversion

Although the implicit conversions are convenient, we also need a
greater degree of control over type conversion

How to perform the type conversion?

➢ Using cast operator (explicit conversions)

➢ If adding a int type variable and a float type variable, the compiler will
convert the int type variable into float type

(type-name) expression

Float f, frac_part;
frac_part = f - (int) f;

26

Basic Type
Introduction - Type definitions

The #define directive can be used to create a "Boolean type" macro

Advantages

➢ Make a program easier to modify

#define Bool int

typedef int Bool;

Bool flag; //same as int flag;

typedef int dollars; typedef long dollars;

dollars money;
money = 100000;

Another way is type definition

27

Basic Type
Introduction - Sizeof Operator

The operator is to represent the number of bytes required to store a
value belonging to type-name

sizeof(char); // will return 1

sizeof(int); // will return 4 in a 32-bit machine

sizeof (type-name)

int x, y;
sizeof(x); // will return 4 in a 32-bit machine
sizeof(x+y); // will return 4 in a 32-bit machine

It can also be applied to constants, variables, and expressions in
general

28

Basic Type
Introduction

Write a program to convert 12-hour time into 24-hour time

29

